If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x+x^2=180
We move all terms to the left:
10x+x^2-(180)=0
a = 1; b = 10; c = -180;
Δ = b2-4ac
Δ = 102-4·1·(-180)
Δ = 820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{820}=\sqrt{4*205}=\sqrt{4}*\sqrt{205}=2\sqrt{205}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{205}}{2*1}=\frac{-10-2\sqrt{205}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{205}}{2*1}=\frac{-10+2\sqrt{205}}{2} $
| -4+z÷2=16 | | 6(x-3)-9=25x-255 | | 3x-30+4x=80 | | -6=x+34/8 | | 36=–2v+6v | | 7x+8)=49 | | -72=6(x-8) | | x,-3=-4 | | 5x-2(4x-9)=5+5(2-x) | | x=7,-5=-3 | | 112+21x=360 | | 0.75-36.00=x | | 75x+50=50x+100 | | 2(3-2f)=2(6-f) | | 1/8b–7=2 | | x2+10=x2+98 | | 2.25t+5=13.5t+142.25t+5=13.5t+14 | | 4x+9+2x+4+4x=123 | | 18+4y=13y | | 67x=4 | | x,3-4=2 | | 0,1*z=2,7 | | 15+-75=x | | 1600=(20+2x)(40+2x) | | (16-2)180=s | | -10x=9x=12 | | 15=-75=x | | x=2(-50)-10 | | x=45=6x | | 3z=6z-147 | | 5(x+2)-5(x+10)=0 | | p/2-7=83 |